0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 351 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 483 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 RewriteLemmaProof (LOWER BOUND(ID), 244 ms)
↳14 BEST
↳15 typed CpxTrs
↳16 NoRewriteLemmaProof (LOWER BOUND(ID), 67 ms)
↳17 typed CpxTrs
↳18 LowerBoundsProof (⇔, 0 ms)
↳19 BOUNDS(n^2, INF)
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^2, INF)
↳23 typed CpxTrs
↳24 LowerBoundsProof (⇔, 0 ms)
↳25 BOUNDS(n^1, INF)
↳26 typed CpxTrs
↳27 LowerBoundsProof (⇔, 0 ms)
↳28 BOUNDS(n^1, INF)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
f(s(x)) → f(-(*(s(s(0)), s(x)), s(s(x))))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
f(s(x)) → f(-(*'(s(s(0')), s(x)), s(s(x))))
They will be analysed ascendingly in the following order:
- < f
+' < *'
*' < f
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, +', *', f
They will be analysed ascendingly in the following order:
- < f
+' < *'
*' < f
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+', *', f
They will be analysed ascendingly in the following order:
+' < *'
*' < f
Induction Base:
+'(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
+'(gen_0':s3_0(+(n237_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(+'(gen_0':s3_0(n237_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c238_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
*', f
They will be analysed ascendingly in the following order:
*' < f
Induction Base:
*'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s3_0(a), gen_0':s3_0(+(n708_0, 1))) →RΩ(1)
+'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n708_0))) →IH
+'(gen_0':s3_0(a), gen_0':s3_0(*(c709_0, a))) →LΩ(1 + a)
gen_0':s3_0(+(a, *(n708_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.